Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Characterization of an apple TT2-type R2R3 MYB transcription factor functionally similar to the poplar proanthocyanidin regulator PtMYB134.

Identifieur interne : 002336 ( Main/Exploration ); précédent : 002335; suivant : 002337

Characterization of an apple TT2-type R2R3 MYB transcription factor functionally similar to the poplar proanthocyanidin regulator PtMYB134.

Auteurs : Andreas Gesell [Canada] ; Kazuko Yoshida ; Lan T. Tran ; C Peter Constabel

Source :

RBID : pubmed:24923676

Descripteurs français

English descriptors

Abstract

MAIN CONCLUSION

The apple MdMYB9 gene encodes a positive regulator of proanthocyanidin synthesis that activates anthocyanidin reductase promoters from apple and poplar via interaction with basic helix-loop-helix proteins. The regulation of proanthocyanidins (PAs, condensed tannins) is of great importance in food plants due to the many benefits of PAs in the human diet. Two candidate flavonoid MYB regulators, MdMYB9 and MdMYB11, were cloned from apple (Malus × domestica) based on their similarity to known MYB PA regulators. Transcript accumulation of both MdMYB9 and MdMYB11 was induced by high light and wounding, similar to the poplar (Populus spp) PA regulator PtMYB134. In transient activation assays with various basic helix-loop-helix (bHLH) co-regulators, MdMYB9 activated apple and poplar anthocyanidin reductase (ANR) promoters, while MdMYB11 showed no activity. Potential transcription factor binding elements were found within several ANR promoters, and the importance of the bHLH binding site (E-box) on ANR promoter activation was demonstrated via mutational analysis. The ability of MdMYB9 and PtMYB134 to reciprocally activate ANR promoters from both apple and poplar and to partner with heterologous bHLH co-factors from these plants confirms the high degree of conservation of PA regulatory complexes across species. The similarity in apple and poplar PA regulation suggests that regulatory genes from poplar could be effectively employed for metabolic engineering of the PA pathway in apple.


DOI: 10.1007/s00425-014-2098-y
PubMed: 24923676


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Characterization of an apple TT2-type R2R3 MYB transcription factor functionally similar to the poplar proanthocyanidin regulator PtMYB134.</title>
<author>
<name sortKey="Gesell, Andreas" sort="Gesell, Andreas" uniqKey="Gesell A" first="Andreas" last="Gesell">Andreas Gesell</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biology & Centre for Forest Biology, University of Victoria, Station CSC, Box 3020, Victoria, BC, V8W 3N5, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Biology & Centre for Forest Biology, University of Victoria, Station CSC, Box 3020, Victoria, BC, V8W 3N5</wicri:regionArea>
<wicri:noRegion>V8W 3N5</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Yoshida, Kazuko" sort="Yoshida, Kazuko" uniqKey="Yoshida K" first="Kazuko" last="Yoshida">Kazuko Yoshida</name>
</author>
<author>
<name sortKey="Tran, Lan T" sort="Tran, Lan T" uniqKey="Tran L" first="Lan T" last="Tran">Lan T. Tran</name>
</author>
<author>
<name sortKey="Constabel, C Peter" sort="Constabel, C Peter" uniqKey="Constabel C" first="C Peter" last="Constabel">C Peter Constabel</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="RBID">pubmed:24923676</idno>
<idno type="pmid">24923676</idno>
<idno type="doi">10.1007/s00425-014-2098-y</idno>
<idno type="wicri:Area/Main/Corpus">002136</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002136</idno>
<idno type="wicri:Area/Main/Curation">002136</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">002136</idno>
<idno type="wicri:Area/Main/Exploration">002136</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Characterization of an apple TT2-type R2R3 MYB transcription factor functionally similar to the poplar proanthocyanidin regulator PtMYB134.</title>
<author>
<name sortKey="Gesell, Andreas" sort="Gesell, Andreas" uniqKey="Gesell A" first="Andreas" last="Gesell">Andreas Gesell</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biology & Centre for Forest Biology, University of Victoria, Station CSC, Box 3020, Victoria, BC, V8W 3N5, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Biology & Centre for Forest Biology, University of Victoria, Station CSC, Box 3020, Victoria, BC, V8W 3N5</wicri:regionArea>
<wicri:noRegion>V8W 3N5</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Yoshida, Kazuko" sort="Yoshida, Kazuko" uniqKey="Yoshida K" first="Kazuko" last="Yoshida">Kazuko Yoshida</name>
</author>
<author>
<name sortKey="Tran, Lan T" sort="Tran, Lan T" uniqKey="Tran L" first="Lan T" last="Tran">Lan T. Tran</name>
</author>
<author>
<name sortKey="Constabel, C Peter" sort="Constabel, C Peter" uniqKey="Constabel C" first="C Peter" last="Constabel">C Peter Constabel</name>
</author>
</analytic>
<series>
<title level="j">Planta</title>
<idno type="eISSN">1432-2048</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acid Sequence (MeSH)</term>
<term>Arabidopsis (genetics)</term>
<term>Base Sequence (MeSH)</term>
<term>E-Box Elements (MeSH)</term>
<term>Flavonoids (metabolism)</term>
<term>Gene Expression Regulation, Plant (MeSH)</term>
<term>Malus (genetics)</term>
<term>Molecular Sequence Data (MeSH)</term>
<term>Phylogeny (MeSH)</term>
<term>Populus (genetics)</term>
<term>Proanthocyanidins (metabolism)</term>
<term>Promoter Regions, Genetic (MeSH)</term>
<term>Transcription Factors (genetics)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Arabidopsis (génétique)</term>
<term>Données de séquences moléculaires (MeSH)</term>
<term>Facteurs de transcription (génétique)</term>
<term>Flavonoïdes (métabolisme)</term>
<term>Malus (génétique)</term>
<term>Phylogenèse (MeSH)</term>
<term>Populus (génétique)</term>
<term>Proanthocyanidines (métabolisme)</term>
<term>Régions promotrices (génétique) (MeSH)</term>
<term>Régulation de l'expression des gènes végétaux (MeSH)</term>
<term>Séquence d'acides aminés (MeSH)</term>
<term>Séquence nucléotidique (MeSH)</term>
<term>Éléments E-box (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Transcription Factors</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Flavonoids</term>
<term>Proanthocyanidins</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Arabidopsis</term>
<term>Malus</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Arabidopsis</term>
<term>Facteurs de transcription</term>
<term>Malus</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Flavonoïdes</term>
<term>Proanthocyanidines</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Base Sequence</term>
<term>E-Box Elements</term>
<term>Gene Expression Regulation, Plant</term>
<term>Molecular Sequence Data</term>
<term>Phylogeny</term>
<term>Promoter Regions, Genetic</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Données de séquences moléculaires</term>
<term>Phylogenèse</term>
<term>Régions promotrices (génétique)</term>
<term>Régulation de l'expression des gènes végétaux</term>
<term>Séquence d'acides aminés</term>
<term>Séquence nucléotidique</term>
<term>Éléments E-box</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>MAIN CONCLUSION</b>
</p>
<p>The apple MdMYB9 gene encodes a positive regulator of proanthocyanidin synthesis that activates anthocyanidin reductase promoters from apple and poplar via interaction with basic helix-loop-helix proteins. The regulation of proanthocyanidins (PAs, condensed tannins) is of great importance in food plants due to the many benefits of PAs in the human diet. Two candidate flavonoid MYB regulators, MdMYB9 and MdMYB11, were cloned from apple (Malus × domestica) based on their similarity to known MYB PA regulators. Transcript accumulation of both MdMYB9 and MdMYB11 was induced by high light and wounding, similar to the poplar (Populus spp) PA regulator PtMYB134. In transient activation assays with various basic helix-loop-helix (bHLH) co-regulators, MdMYB9 activated apple and poplar anthocyanidin reductase (ANR) promoters, while MdMYB11 showed no activity. Potential transcription factor binding elements were found within several ANR promoters, and the importance of the bHLH binding site (E-box) on ANR promoter activation was demonstrated via mutational analysis. The ability of MdMYB9 and PtMYB134 to reciprocally activate ANR promoters from both apple and poplar and to partner with heterologous bHLH co-factors from these plants confirms the high degree of conservation of PA regulatory complexes across species. The similarity in apple and poplar PA regulation suggests that regulatory genes from poplar could be effectively employed for metabolic engineering of the PA pathway in apple.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">24923676</PMID>
<DateCompleted>
<Year>2015</Year>
<Month>11</Month>
<Day>09</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1432-2048</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>240</Volume>
<Issue>3</Issue>
<PubDate>
<Year>2014</Year>
<Month>Sep</Month>
</PubDate>
</JournalIssue>
<Title>Planta</Title>
<ISOAbbreviation>Planta</ISOAbbreviation>
</Journal>
<ArticleTitle>Characterization of an apple TT2-type R2R3 MYB transcription factor functionally similar to the poplar proanthocyanidin regulator PtMYB134.</ArticleTitle>
<Pagination>
<MedlinePgn>497-511</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s00425-014-2098-y</ELocationID>
<Abstract>
<AbstractText Label="MAIN CONCLUSION" NlmCategory="CONCLUSIONS">The apple MdMYB9 gene encodes a positive regulator of proanthocyanidin synthesis that activates anthocyanidin reductase promoters from apple and poplar via interaction with basic helix-loop-helix proteins. The regulation of proanthocyanidins (PAs, condensed tannins) is of great importance in food plants due to the many benefits of PAs in the human diet. Two candidate flavonoid MYB regulators, MdMYB9 and MdMYB11, were cloned from apple (Malus × domestica) based on their similarity to known MYB PA regulators. Transcript accumulation of both MdMYB9 and MdMYB11 was induced by high light and wounding, similar to the poplar (Populus spp) PA regulator PtMYB134. In transient activation assays with various basic helix-loop-helix (bHLH) co-regulators, MdMYB9 activated apple and poplar anthocyanidin reductase (ANR) promoters, while MdMYB11 showed no activity. Potential transcription factor binding elements were found within several ANR promoters, and the importance of the bHLH binding site (E-box) on ANR promoter activation was demonstrated via mutational analysis. The ability of MdMYB9 and PtMYB134 to reciprocally activate ANR promoters from both apple and poplar and to partner with heterologous bHLH co-factors from these plants confirms the high degree of conservation of PA regulatory complexes across species. The similarity in apple and poplar PA regulation suggests that regulatory genes from poplar could be effectively employed for metabolic engineering of the PA pathway in apple.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Gesell</LastName>
<ForeName>Andreas</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Department of Biology & Centre for Forest Biology, University of Victoria, Station CSC, Box 3020, Victoria, BC, V8W 3N5, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Yoshida</LastName>
<ForeName>Kazuko</ForeName>
<Initials>K</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Tran</LastName>
<ForeName>Lan T</ForeName>
<Initials>LT</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Constabel</LastName>
<ForeName>C Peter</ForeName>
<Initials>CP</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2014</Year>
<Month>06</Month>
<Day>13</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Germany</Country>
<MedlineTA>Planta</MedlineTA>
<NlmUniqueID>1250576</NlmUniqueID>
<ISSNLinking>0032-0935</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D005419">Flavonoids</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D044945">Proanthocyanidins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014157">Transcription Factors</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>18206-61-6</RegistryNumber>
<NameOfSubstance UI="C013221">proanthocyanidin</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017360" MajorTopicYN="N">Arabidopsis</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001483" MajorTopicYN="N">Base Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D024721" MajorTopicYN="N">E-Box Elements</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005419" MajorTopicYN="N">Flavonoids</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="Y">Gene Expression Regulation, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D027845" MajorTopicYN="N">Malus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010802" MajorTopicYN="N">Phylogeny</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D044945" MajorTopicYN="N">Proanthocyanidins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011401" MajorTopicYN="N">Promoter Regions, Genetic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014157" MajorTopicYN="N">Transcription Factors</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2014</Year>
<Month>01</Month>
<Day>20</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2014</Year>
<Month>05</Month>
<Day>19</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>6</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>6</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2015</Year>
<Month>11</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">24923676</ArticleId>
<ArticleId IdType="doi">10.1007/s00425-014-2098-y</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Phytochemistry. 2011 Sep;72(13):1551-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21354580</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Endocrinol. 1999 May;13(5):774-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10319327</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 2010 Mar;29(3):285-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20107808</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2003 Sep;64(2):367-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12943753</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2012 Jan;158(1):200-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22086422</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2011 Apr;66(1):94-116</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21443626</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 1997 May;11(5):1079-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9193077</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1997 Apr;9(4):611-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9144964</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2012 Feb 27;12:30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22369244</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2005 Sep;66(18):2127-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16153412</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Res Notes. 2012 Nov 02;5:618</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23121691</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2012 Jan 23;12:12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22269060</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1989 Aug 11;58(3):537-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2503252</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Agric Food Chem. 2008 Feb 13;56(3):974-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18193833</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods. 2001 Dec;25(4):402-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11846609</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1999 Jul;11(7):1337-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10402433</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2013 Jan;161(1):225-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23096157</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2012 Jul;159(3):1204-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22566493</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Nutr Food Res. 2007 Jun;51(6):652-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17533651</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant. 2010 May;3(3):509-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20118183</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2001 Oct;4(5):447-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11597504</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2000 Dec;12(12):2383-2394</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11148285</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2013 Apr 25;13:68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23617716</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2010 Mar 21;10:50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20302676</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2006 Nov;142(3):1216-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17012405</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2012 Sep;63(15):5437-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22859681</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 1998 Mar;36(5):741-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9526507</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2010 Oct;15(10):573-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20674465</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2008 Jul 22;8:83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18647406</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2006;57:405-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16669768</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2001 Jun;46(3):347-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11488481</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 Jun;150(2):924-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19395405</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2007 Mar;143(3):1347-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17208963</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 Dec;151(4):2028-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19783643</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2003 Oct;133(2):462-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14555774</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2005 Jan;57(2):155-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15821875</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nutr Rev. 2010 Mar;68(3):168-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20384847</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2006;172(4):617-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17096789</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2001 Sep;13(9):2099-114</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11549766</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2008 Apr 25;320(5875):492-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18436780</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 1992 May;6(5):864-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1577278</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2011 Aug;67(3):406-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21477081</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2010 Jun;51(6):912-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20448098</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Protoc. 2009;4(1):71-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19131958</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 Feb;149(2):1028-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19098092</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2004 Oct;40(1):22-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15361138</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2008 Feb;49(2):157-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18202001</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 1996 Nov;32(4):599-609</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8980512</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Methods. 2008 Jul 07;4:17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18601751</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2002 Dec;32(5):701-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12472686</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2008 Jan;36(Database issue):D1034-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17932055</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 Feb;149(2):981-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19091872</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2013 Jul;82(4-5):457-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23689818</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2007 Aug;24(8):1596-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17488738</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2010 Oct;232(5):1045-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20690029</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2007 Feb;49(3):414-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17181777</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1994 Nov 11;22(22):4673-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7984417</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2010 Oct;42(10):833-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20802477</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2004 Aug;39(3):366-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15255866</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 1999 Sep;9(9):868-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10508846</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1990 Nov 23;250(4984):1104-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2174572</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2009 Apr;37(6):e45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19237396</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Methods. 2005 Dec 18;1:13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16359558</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2005 Jan;165(1):9-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15720617</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2013 Jan;197(2):454-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23157553</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013 May 31;8(5):e65132</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23741471</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Canada</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Constabel, C Peter" sort="Constabel, C Peter" uniqKey="Constabel C" first="C Peter" last="Constabel">C Peter Constabel</name>
<name sortKey="Tran, Lan T" sort="Tran, Lan T" uniqKey="Tran L" first="Lan T" last="Tran">Lan T. Tran</name>
<name sortKey="Yoshida, Kazuko" sort="Yoshida, Kazuko" uniqKey="Yoshida K" first="Kazuko" last="Yoshida">Kazuko Yoshida</name>
</noCountry>
<country name="Canada">
<noRegion>
<name sortKey="Gesell, Andreas" sort="Gesell, Andreas" uniqKey="Gesell A" first="Andreas" last="Gesell">Andreas Gesell</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002336 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002336 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:24923676
   |texte=   Characterization of an apple TT2-type R2R3 MYB transcription factor functionally similar to the poplar proanthocyanidin regulator PtMYB134.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:24923676" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020